Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Shang Shan, ${ }^{\text {a }}$ Duan-Jun Xu^{b} * and Wei-Xiao Hu ${ }^{\text {a }}$

${ }^{\text {a College of Chemical and Materials Engineering, }}$ Zhejiang University of Technology, Hangzhou, People's Republic of China, and ${ }^{\text {b/b }}$ Department of Chemistry, Zhejiang University, Hangzhou, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.047$
$w R$ factor $=0.123$
Data-to-parameter ratio $=15.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Cyclohexanone 2,4-dinitrophenylhydrazone

Crystals of the title compound, $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$ were obtained by a condensation reaction between cyclohexanone and 2,4dinitrophenylhydrazine. Within the dinitrophenyl group, the distances of 1.420 (2) and 1.422 (2) \AA for the $\mathrm{C}-\mathrm{C}$ bonds close to the imino group are appreciably longer than the average distance of 1.377 (2) \AA for the rest of the $\mathrm{C}-\mathrm{C}$ bonds in the ring. The overlapped arrangement and separation of 3.379 (8) \AA between parallel aromatic rings suggest the existence of a $\pi-\pi$-stacking interaction between neighboring molecules.

Comment

As part of the structural investigation of phenylhydrazone derivatives (Shan et al., 2003), we present here the crystal structure of the title compound, (I), which was prepared recently using a condensation reaction between cyclohexanone and 2,4-dinitrophenylhydrazine.

(I)

The phenylhydrazone moiety in (I) has a planar structure and the cyclohexane group assumes a chair conformation (Fig. 1). Distances of 1.420 (2) and 1.422 (2) \AA for the $\mathrm{C} 1-\mathrm{C} 2$ and C1-C6 bonds, both close to the imino group, are appreciably longer than the average distance of 1.377 (2) \AA for the rest of the $\mathrm{C}-\mathrm{C}$ bonds in the substituted phenyl ring, which range from 1.357 (2) to 1.398 (2) \AA (Table 1). This is in agreement with the values found in 2,4-dinitrophenylhydrazone derivatives reported previously (Dinger \& Scott, 2000; Shan et al., 2003). The imino atom H3 forms an intramolecular hydrogen bond to the adjacent nitro group, with an N3...O1 distance of 2.6268 (19) \AA and an N3-H3 - O1 angle of 128°. Another short, though non-bonding, intramolecular contact C $\mathrm{H} \cdots \mathrm{H}-\mathrm{C}$, with an $\mathrm{H} \cdots \mathrm{H}$ distance of $1.90 \AA$, is also observed between atoms H 3 and $\mathrm{H} 12 A$ of the cyclohexane group; this is comparable to the distance of $1.97 \AA$ found in quinolylcyclohexanone phenylhydrazone (Bocelli et al., 1984).

A weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, with a $\mathrm{C} 5 \cdots \mathrm{O} 4^{\mathrm{i}}$ distance of 3.292 (2) \AA and a C5-H5 . OO 4^{i} angle of 143° [symmetry code: (i) $2-x, 1-y, 1-z$], links the molecules in the crystal into centrosymmetric dimers, as shown in Fig. 1. The overlapped arrangement of parallel aromatic rings (Fig. 2) and the separation of 3.379 (8) \AA between the C 1 and

Received 9 July 2003 Accepted 16 July 2003 Online 24 July 2003

Figure 1
Centrosymmetric molecular dimers in the structure of (I), shown with 30% probability displacement ellipsoids. Dashed lines indicate the intramolecular and intermolecular hydrogen bonding [symmetry code: (i) $2-x, 1-y, 1-z]$.
$\mathrm{C} 1^{\mathrm{ii}}$ rings also suggest the existence of $\pi-\pi$-stacking interactions between neighboring molecules [symmetry code: (ii) $1-x, 1-y, 1-z]$.

Experimental

2,4-Dinitrophenylhydrazine ($0.4 \mathrm{~g}, 2 \mathrm{mmol}$) was dissolved in ethanol $(10 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(98 \%, 0.5 \mathrm{ml})$ was added slowly with stirring. The solution was heated at about 333 K for several minutes until it became clear. Cyclohexanone ($0.2 \mathrm{~g}, 2 \mathrm{mmol}$) was added dropwise with continuous stirring and the resulting mixture was refluxed for 30 min . After the solution had cooled to room temperature, a yellow powder appeared. This was separated and washed with water three times. Recrystallization from absolute ethanol yielded well shaped single crystals of (I).

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.433 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2694 \\
& \quad \text { reflections } \\
& \theta=1.8-27.4^{\circ} \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=296(2) \mathrm{K} \\
& \text { Plate, yellow } \\
& 0.51 \times 0.45 \times 0.09 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: none
4526 measured reflections
2883 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.123$
$S=1.05$
2883 reflections
182 parameters
H -atom parameters constrained

1988 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=27.4^{\circ}$
$h=-8 \rightarrow 9$
$k=-10 \rightarrow 10$
$l=-15 \rightarrow 15$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0573 P)^{2}\right.$
$+0.0918 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.21 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.20 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.022 (4)

Figure 2
A molecular packing diagram, showing $\pi-\pi$ stacking between neighboring aromatic rings [symmetry code: (ii) $1-x, 1-y, 1-z$].

Table 1
Selected geometric parameters (\AA).

N3-C1	$1.355(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.386(2)$
$\mathrm{N} 3-\mathrm{N} 4$	$1.3860(18)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.368(2)$
$\mathrm{N} 4-\mathrm{C} 7$	$1.276(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.398(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.420(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.357(2)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.422(2)$		

H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and included in the final cycles of refinement in the riding-model approximation, with $U_{\text {iso }}(H)=1.2 U_{\text {eq }}$ or $1.5 U_{\text {eq }}$ of the carrier atoms.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC and Rigaku, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank Dr Jian-Ming Gu for assistance in the data collection.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bocelli, G., Tosi, G. \& Cardellini, L. (1984). Acta Cryst. C40, 1952-1954.
Dinger, M. B. \& Scott, M. J. (2000). Inorg. Chem. 39, 1238-1254.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC \& Rigaku (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, Akishima, Tokyo, Japan.
Shan, S., Xu, D., Hung, C., Wu, J. \& Chiang, M. Y. (2003). Acta Cryst. C59, o135-o136.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

